In silico Approach Revealed α-amylase Inhibitor of Sappanon Compounds From Caesalpinia sappan In Carbohydrate Metabolism

Kajian in silico Senyawa Sappanon Caesalpinia sappan Sebagai Inhibitor α-amylase Pada Metabolisme Karbohidrat

  • Dewi Ratih Tirto Sari Department Pharmacy, Faculty of Medical Science, Ibrahimy University
  • Siti Zamilatul Azkiyah Program Studi Farmasi, Fakultas Ilmu Kesehatan, Universitas Ibrahimy, Situbondo
  • M. Eko Pranoto Program Studi Farmasi, Fakultas Ilmu Kesehatan, Universitas Ibrahimy, Situbondo
  • Yohanes Bare Program Studi Pendidikan Biologi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Nusa Nipa, Nusa Tenggara Timur
  • Lailatus Sarifah Program Studi Farmasi, Fakultas Ilmu Kesehatan, Universitas Ibrahimy, Situbondo, Jawa Timur
Keywords: α- amylase, Caesalpinia sappan, diabetes mellitus type-2, sappanone A, sappanone B


Human salivary amylase is a hydrolase enzyme that hydrolyze polysaccharides to small sugar.  The α- amylase inhibition is an alternative strategy for reducing hyperglycemia. Caesalpinia sappan heartwood contains several bioactive compounds, as sappanon and derivates. Those compounds have been reported for promoting PDE4 inhibitor and anti-inflammatory. This study compared the α- amylase antagonist effect of sappanone A, Sappanone B, 3′-Deoxysappanone A, 3-Deoxysappanone B, and Neosappanone A compounds through molecular docking. In silico approach was used to identified the potential activity of those compounds. Five sappanone compound and their derivates were taken out the 3D structure at PubChem NCBI database. Then the α- amylase structure also was downloaded from Protein Data Bank with PDB ID 1smd. Among five sappanon compounds, L-peptide linking (control) and α- amylase were redocked using Molegro virtual docker and then visualized by Discovery studio version 5.50. The 3D complex structure of five sappanone compounds and their derivates showed inhibition activity of α- amylase at the same site of L-peptide linking. LYS227 was identifies in five sappanon - α-amilase complex. The ILE230 also showed in the complex of Neosappanone A, Sappanone B, and 3-Deoxysappanone B. interestingly, the ASN250 performed at Sappanone A and Sappanone B. in conclusion, this study suggests that five sappanone compounds and derivates potentially as antihyperglycemic and prevent the diabetes mellitus type 2 syndrome.


1. McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clinics in Dermatology. 2018;36(1):14–20.
2. Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS Bin. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets. McDonald D, editor. BioMed Research International. 2014;2014:801269.
3. Centers for Disease Control and Prevention. National Diabetes Statistics Report website. 2022.
4. Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes ? Biotechnology Advances. 2018;36(6):1738–67.
5. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in Endocrinology. 2017;8(January).
6. Lopes G, Barbosa M, Andrade PB, Valentão P. Phlorotannins from Fucales: potential to control hyperglycemia and diabetes-related vascular complications. Journal of Applied Phycology. 2019;31(5):3143–52.
7. Olfat A. Khalil. Antidiabetic activity of Rosmarinus officinalis and its relationship with the antioxidant property. African Journal of Pharmacy and Pharmacology. 2012;6(14).
8. Jannapureddy S. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Frontiers in Endocrinology. 2021;12(March):1–14.
9. Etsassala NGER, Badmus JA, Marnewick JL, Iwuoha EI, Nchu F, Hussein AA. Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Salvia aurita Constituents. Antioxidants (Basel, Switzerland). 2020 Nov;9(11).
10. Bashary R, Vyas M, Nayak SK, Suttee A, Verma S, Narang R, et al. An Insight of Alpha-amylase Inhibitors as a Valuable Tool in the Management of Type 2 Diabetes Mellitus. Current diabetes reviews. 2020;16(2):117–36.
11. Kaur N, Kumar V, Nayak SK, Wadhwa P, Kaur P, Sahu SK. Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chemical biology & drug design. 2021 Oct;98(4):539–60.
12. Bare, Yohanes; Sari, DRT; Ujiana, Wa Ode; Ra’O, PYS; Pada K. Kajian In Silico 6-Paradol Sebagai Herbal Alternatif Pengobatan Penyakit Alzheimer. Medical Sains. 2022;7(2):1–8.
13. Bare Y, S M, Tiring SSND, Sari DRT, Maulidi A. Virtual Screening: Prediksi potensi 8-shogaol terhadap c-Jun N-Terminal Kinase (JNK). Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: e-Saintika. 2020;4(1):1.
14. Sari DRT, Krisnamurti GC. In Silico Repositioning Strategies of Theobromine and Caffeine for Psychiatric and Neurological Disorders. Proceeding International Conference on Religion, Science and Education. 2022;1:685–92.
15. Bare Y, Maulidi A, Sari DRT, Tiring SSND. Studi in Silico Prediksi Potensi 6-Gingerol sebagai inhibitor c-Jun N-terminal kinases (JNK). Jurnal Jejaring Matematika dan Sains. 2019;1(2):59–63.
16. Sari, Dewi Ratih Tirto; Krisnamurti GC. 1-dehydrogingerdione, Senyawa Volatil Jahe sebagai Agen Sedatif subtitutif γ - aminobutyrate (GABA); Kajian Biokomputasi. Prosiding Seminar Nasional Biologi. 2021;7(1):389–95.
17. Bare Y, Sari DR, Rachmad YT, Tiring SSND, Rophi AH, Nugraha FAD. Prediction Potential Chlorogenic Acid As Inhibitor Ace (In Silico Study). Bioscience. 2019;3(2):197.
18. Bare Y, Kuki AD, Rophi AH, Krisnamurti GC, Lorenza MRWG, Sari DRT. Prediksi Asam Kuinat Sebagai Anti-Inflamasi Terhadap COX-2 Secara Virtual. Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati. 2019;4(3):124.
19. Bare Y, Timba FS, Putra SHJ, Nirmalasari MY, Sari DRT, Taek MM. Kajian Senyawa Hexose Dan Malic Acid Sebagai Inhibitor Papain Like Protease (PLPro) Corona Virus. Biosense. 2022;05(01):128–37.
20. Bare Y, Helvina M, Elizabeth A, Sari DRT. Potensi Asam Kafeat Pada Kopi Sebagai Simultan Gen Peroxixme Proliferator-Activated Receptor Gamma (Ppar-Î3): Studi in Silico. JSLK. 2019;2 (2): 52–3.
21. Syamsunarno MRA, Safitri R, Kamisah Y. Protective Effects of Caesalpinia sappan Linn. and Its Bioactive Compounds on Cardiovascular Organs. Frontiers in Pharmacology. 2021;12(9):1–14.
22. Tafesse TB, Hymete A, Mekonnen Y, Tadesse M. Antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota Benth on alloxan-induced diabetic mice. BMC Complementary and Alternative Medicine. 2017;17(1):1–9.
23. Dapson RW, Bain CL. Brazilwood, sappanwood, brazilin and the red dye brazilein: From textile dyeing and folk medicine to biological staining and musical instruments. Biotechnic and Histochemistry. 2015;90(6):401–23.
24. Sari DRT, Lailiyah F, Bare Y. Comparative Study of Sappanon A and Sappanon B Compounds in Inhibiting Tyrosin Phospatase 1B Protein. Spizaetus : Jurnal Biologi dan Pendidikan Biologi. 2022;3(2):48–55.
25. Govindappa M. A Review on Role of Plant(s) Extracts and its Phytochemicals for the Management of Diabetes. Journal of Diabetes & Metabolism. 2015;5.
26. Sari DRT, Krisnamurti GC, Bare Y. Pemetaan Bioaktivitas Senyawa Metabolit Sekunder Pada Kayu Secang (Caesalpinia sappan) Secara In Silico. Journal Pharmasci (Journal of Pharmacy and Science). 2022;7(1):21–8.
27. Mueller M, Weinmann D, Toegel S, Holzer W, Unger FM, Viernstein H. Compounds from Caesalpinia sappan with anti-inflammatory properties in macrophages and chondrocytes. Food and Function. 2016;7(3):1671–9.
28. Fatoni A, Anggraeni MD, Zusfahair, Zulhidayah LZ. Natural reagent from Secang (Caesalpinia sappan L.) heartwood for urea biosensor. IOP Conference Series: Materials Science and Engineering. 2019;509(1):0–7.
29. Wang Y-Z, Wang Y-L, Che H-J, Jia Y-H, Wang H-F, Zuo L-F, et al. Sappanone A: A natural PDE4 inhibitor with dual anti-inflammatory and antioxidant activities from the heartwood of Caesalpinia sappan L. Journal of Ethnopharmacology. 2022 Dec 1;304:116020.
30. Wang M, Chen Z, Yang L, Ding L. Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress. Inflammation. 2021;44(3):934–45.
31. Chu M-J, Wang Y-Z, Itagaki K, Ma H-X, Xin P, Zhou X-G, et al. Identification of active compounds from Caesalpinia sappan L. extracts suppressing IL-6 production in RAW 264.7 cells by PLS. Journal of ethnopharmacology. 2013 Jun;148(1):37–44.
32. Sari DRT, Yusuf H, Sifaiyah L, Camelia ND, Bare Y. Kajian Farmakoinformatika Senyawa Brazilin Dan 3-O- Methyl Brazilin Caesalpinia sappan Sebagai Terapi Demam Berdarah Dengue. Al-Kimiya: Jurnal Ilmu Kimia dan Terapan. 2022;9(1):19–25.
33. Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ. Structure of Human Salivary α-Amylase at 1.6 ÅResolution: Implications for its Role in the Oral Cavity. Acta Crystallographica Section D. 1996 May;52(3):435–46.
34. Bitencourt-Ferreira G, de Azevedo WFJ. Molegro Virtual Docker for Docking. Methods in molecular biology (Clifton, NJ). 2019;2053:149–67.
35. Bare Y, Krisnamurti GC, Elizabeth A, Rachmad YT, Sari DRT, Gabrella Lorenza MRW. The potential role of caffeic acid in coffee as cyclooxygenase-2 (COX-2) inhibitor: In silico study. Biointerface Research in Applied Chemistry. 2019;9(5).
36. Hidayatullah A, Putra WE, Sustiprijatno S, Permatasari GW, Salma WO, Widiastuti D, et al. In Silico Targeting DENV2"s Prefusion Envelope Protein by Several Natural Products" Bioactive Compounds. Chiang Mai University Journal of Natural Sciences. 2021;20 (3).
37. Irfandi R, Santi S, Raya I, Ahmad A, Ahmad Fudholi, Sari DRT, et al. Study of new Zn(II)Prolinedithiocarbamate as a potential agent for breast cancer: Characterization and molecular docking. Journal of Molecular Structure. 2022;1252:132101.
38. Bare Y, Kuki AD, Daeng Tiring SSN, Rophi AH, Krisnamurti GC, Sari DRT. In Silico Study: Prediction the Potential of Caffeic Acid As ACE inhibitor. El-Hayah. 2020;7(3):94–8.
39. Sari DRT, Safitri A, Cairns JRK, Fatchiyah F. Anti-Apoptotic Activity of Anthocyanins has Potential to inhibit Caspase-3 Signaling. Journal of Tropical Life Science. 2020;10 (1):15–25.
40. Krisnamurti GC, Sari DRT. Does Centella Asiatica Have Antiaging Activity in Skincare Products ? Atlantis Press. 2022;630(Icetech 2021):240–5.
41. Krisnamurti GC, Sari DR, Bare Y. Capsaicinoids from Capsicum annuum as an Alternative FabH Inhibitor of Mycobacterium Tuberculosis : In Silico Study. Makara Journal of Science. 2021;25(4):195–202.
42. Oso BJ, Olaoye IF. Comparative in vitro studies of antiglycemic potentials and molecular docking of Ageratum conyzoides L. and Phyllanthus amarus L. methanolic extracts. SN Applied Sciences. 2020;2(4).
43. S. LS, Raghu C, Arjun HA, Anantharaman P. In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydrate Polymers. 2019;209(1): 350–5.
How to Cite
Sari, D. R. T., Azkiyah, S. Z., Pranoto, M. E., Bare, Y., & Sarifah, L. (2023). In silico Approach Revealed α-amylase Inhibitor of Sappanon Compounds From Caesalpinia sappan In Carbohydrate Metabolism : Kajian in silico Senyawa Sappanon Caesalpinia sappan Sebagai Inhibitor α-amylase Pada Metabolisme Karbohidrat. Journal Pharmasci (Journal of Pharmacy and Science), 8(2), 197-203.