Hydroxyapatite From Kepah Shells (Polymesoda erosa) and Its In Vitro Sunscreen Activity
Hidroksiapatit Dari Cangkang Kerang Kepah (Polymesoda erosa) dan Aktivitas Tabir Surya Secara In Vitro
DOI:
https://doi.org/10.53342/pharmasci.v10i1.485Keywords:
hydroxyapatite, , kepah shells, , SPF, , sunscreen,Abstract
Sunscreen innovation from natural ingredients is needed, because there are many advantages obtained from the use of these natural ingredients, such as the absence of side effects, and easy to obtain. Kepah shells (Polymesoda erosa) are found in Cilacap, Central Java. Kepah shells containing calcium carbonate can be used in the manufacture of hydroxyapatite (HAP). Hydroxyapatite can be used as a sunscreen agent that can effectively absorb the ultraviolet light. Hydroxyapatite was isolated from kepah shells (Polymesoda erosa). The analysis of HAP is done using Fourier Trasform Infra Red (FTIR) spectroscopy to find out functional groups. The sun protection factor (SPF) value of HAP was determined using the spectrophotometric UV-Vis method. FTIR spectra of HAP showed the presence of a hydroxyl group at 3039-3749 cm-1, a phosphate group at 520-621 cm-1 and a carbonate group at 1489-2156 cm-1. HAP from kepah shells has sunscreen potential with minimal protection at a concentration of 200 ppm; and ultra protection at a concentration of 1000 ppm. The average SPF result of HAP 1000 ppm clam shells is 19.23 (ultra protection) and at a concentration of 200 ppm is 0.59 (minimum protection). HAP from kepah shells has the potential to be developed as a sunscreen ingredient. The development of sun protection products still requires further research.
References
2. Salvador A, Chisvert A. Sunscreen Analysis a Critical Survey on UV Filters Determination. Anal Chim Acta. 2005;537(1–2).
3. Hassan I, Dorjay K, Sami A, Anwar P. Sunscreens and Antioxidants as Photo-Protective Measures: An Update. Our Dermatology Online. 2013;4(3):369–74.
4. Saewan N, Jimtaisong A. Photoprotection of Natural Flavonoids. J Appl Pharm Sci. 2013;3(9):129–41.
5. Morton B. The Biology and Funtional ot The Souteast Asian Mangrove Bivalve Polymesoda (Geloina) erosa (Solander, 1976) Bivalve?: Corciculidae, Indo-Pasific Mangrove Asian Marine Biology. 1976;1.
6. Suryadi. Sintesis dan Karakterisasi Biomaterial Hidroksiapatit dengan Proses Pengendapan Kimia Basah. Universitas Indonesia; 2011.
7. De Araujo TS, De Souza SO, De Sousa EMB, Arajo MS. Production and thermal stability of pure and Cr3+ -doped hydroxyapatite. In: Journal of Physics: Conference Series. Institute of Physics Publishing; 2010.
8. Piccirillo C, Rocha C, Tobaldi DM, Pullar RC, Labrincha JA, Ferreira MO, et al. A hydroxyapatite-Fe2O3 based material of natural origin as an active sunscreen filter. J Mater Chem B. 2014 Sep 28;2(36):5999–6009.
9. Rozaini MZH, Hamzah H, Mohtar NF, Sainoruddin MH, Sofian FRM, Ghazali MSM, et al. Biomaterials Derived from Tamban, Sardinella fimbriata Bones as Promising Anodyne Sunscreen. J Sustain Sci Manag. 2017;2017(Special Issue 3):75–84.
10. Helmi Rozaini MZ, Osman MU, Razali MH, Wai CP, Ibrahim NH, M Fauzi MAF. Modified Calcium From Waste by Product of Crustaceans (Polymesoda erosa) Shell as Alternative Sunscreen Materials. J Anal Pharm Res. 2019;8(5):180–3.
11. Dolingkar MM, Deore SL. Sunscreens?: a Riview. Pharmacognosy Journal. 2016;8(3).
12. Sayre RM, Agin PP, Levee GJ, Maruiwe E. A Comparison of In Vivo and In Vitro Testing of Sunscreening Formulas. Photochem Photobiol. 1979;29:559–66.
13. Helmi Rozaini MZ, Osman MU, Razali MH, Wai CP, Ibrahim NH, M Fauzi MAF. Modified calcium from waste by product of crustaceans (polymesoda erosa)shell as alternative sunscreen materials. J Anal Pharm Res. 2019;8(5):180–3.
14. Rozaini MZH, Hamzah H, Poh Wai C, Razali MH, M. Osman U, Tuan Anuar S, et al. Calcium Hydroxyapatite-Based Marine Origin: Novel Sunscreen Materials for Cosmeceutical Treatments. Oriental Journal of Chemistry. 2018 Dec 28;34(6):2770–6.
15. Zul M, Rozaini H, Hamzah H, Mohtar NORF, Sainoruddin MH, Ridhwan F, et al. Biomaterials Derived From Tamban, Sardinella fimbriata Bone As Promising Anodyne Sunscreen. 2017;(3):75–84.
16. Wadu I, Soetjipto H, Cahyanti N, No JD, Tengah J. Karakterisasi Dan Uji Aktivitas Antibakteri Hidroksiapatit (HAp) Dari Kerabang Telur Ayam Terhadap Bakteri Lactobacillus acidophilus. 2017;2(3):145–51.
17. Mansur J de S, Breder MNR, Mansur MC d’Ascençäo, Azulay RD. Determinaçäo do fator de proteçäo solar por espectrofotometria / Determination of sun protection factor by spectrophotometry. An bras dermatol. 1986;61(3):121–4.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Pri Iswati Utami, Wiranti Sri Rahayu, Karina Festia Ramadani, Astrit Mayang Sari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.