Characterization of Bacterial Isolates and Antibiotic Susceptibility Testing in General Surgery Patients

Analisis Pola Bakteri dan Pola Sensivitas Antibiotik pada Pasien Bedah Umum

Authors

  • Samirah Departemen Farmasi Praktis, Universitas Airlangga
  • Marisa Anggia Ibrahim Magister Farmasi Klinis, Fakultas Farmasi, Universitas Airlangga
  • Arief Prabowo Magister Farmasi Klinis, Fakultas Farmasi, Universitas Airlangga
  • Novita Arbianti Departemen Mikrobiologi, Rumah Sakit Umum Haji, Surabaya
  • Dewi Ramdani Instalasi Farmasi, Rumah Sakit Umum Haji, Surabaya

DOI:

https://doi.org/10.53342/pharmasci.v11i1.563

Keywords:

Pola Bakteri,, Bedah Umum,, Sensitivitas Antibiotik,, ESBL,, MRSA,

Abstract

Antimicrobial resistance represents a critical global health challenge with disproportionate effects on resource-limited healthcare systems. Suboptimal antibiotic prescribing practices contribute to the emergence and dissemination of multidrug-resistant pathogens. This investigation sought to characterize bacterial distribution patterns and antimicrobial susceptibility profiles among general surgery patients, while examining associations between predisposing factors and resistant microorganisms. We conducted a descriptive cross-sectional observational study spanning January 2020 through June 2023, enrolling general surgery patients meeting predetermined inclusion criteria. Among 443 patients with positive bacterial cultures, the predominant isolates included coagulase-negative staphylococci (n=69, 16%), methicillin- resistant Staphylococcus aureus (MRSA; n=23, 5%), extended-spectrum beta-lactamase (ESBL)- producing Escherichia coli (n=87, 24%), ESBL-producing Klebsiella pneumoniae (n=17, 4%), non-ESBL E. coli (n=64, 14%), and non-ESBL K. pneumoniae (n=46, 10%). Antimicrobial susceptibility testing revealed that meropenem, moxifloxacin, tigecycline, and piperacillin/tazobactam demonstrated efficacy against ESBL- producing K. pneumoniae and E. coli. For MRSA isolates, effective agents included piperacillin/tazobactam, rifampicin, vancomycin, and quinupristin/dalfopristin. Ceftriaxone was the most frequently prescribed antibiotic for patients with ESBL and MRSA-positive cultures.

Author Biographies

  • Marisa Anggia Ibrahim, Magister Farmasi Klinis, Fakultas Farmasi, Universitas Airlangga

    Departemen Farmasi Praktis, Universitas Airlangga

  • Arief Prabowo, Magister Farmasi Klinis, Fakultas Farmasi, Universitas Airlangga

    Departemen Farmasi Praktis, Universitas Airlangga

  • Novita Arbianti, Departemen Mikrobiologi, Rumah Sakit Umum Haji, Surabaya

    Departemen Mikrobiologi, Rumah Sakit Umum Haji, Surabaya

  • Dewi Ramdani, Instalasi Farmasi, Rumah Sakit Umum Haji, Surabaya

    Instalasi Farmasi, Rumah Sakit Umum Haji, Surabaya

References

1) Permenkes No. 28. (2021). Peraturan Menteri Kesehatan Republik Indonesia- Nomor 28 tahun 2021- Pedoman Penggunaan Antibiotik.

2) CDC. (2019). Antibiotic resistance threats in the United States, 2019. https://doi.org/10.15620/cdc:82532

3) Kraker de, M. E. A., Stewardson, A. J., & Harbarth, S. (2016). Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050. PLoS Medicine, 13(11),

4) Glass. (2022). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. https://www.who.int/publications/book-orders.

5) Ecdc. (2020). Surveilance Report - Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report for 2019. 1–2. https://www.ecdc.europa.eu/en/publications- data/surveillance-antimicrobial-resistance-europe-2019

6) Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. In Nature Reviews Microbiology (Vol. 20, Issue 5, pp. 257–269). Nature Research. https://doi.org/10.1038/s41579- 021-00649-x

7) C Reygaert, W. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482

8) Saha, M., & Sarkar, A. (2021). Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. Journal of Xenobiotics, 11(4), 197–214. https://doi.org/10.3390/jox11040013

9) WHO. (2018). WHO Report on Surveillance of Antibiotic Consumption.

10) Yam, E. L. Y., Hsu, L. Y., Yap, E. P. H., Yeo, T. W., Lee, V., Schlundt, J., Lwin, M. O.,

Limmathurotsakul, D., Jit, M., Dedon, P., Turner, P., & Wilder-Smith, A. (2019). Antimicrobial Resistance in the Asia Pacific region: A meeting report. Antimicrobial Resistance and Infection Control, 8(1), 1–12. https://doi.org/10.1186/s13756-019-0654-8

11) Kemenkes RI. (2021). Panduan Penatagunaan Antimikroba Di Rumah Sakit. Edisi I. 4–33.

12) Klinker, K. P., Hidayat, L. K., DeRyke, C. A., DePestel, D. D., Motyl, M., & Bauer, K. A. (2021). Antimicrobial Stewardship and Antibiograms: Importance of Moving Beyond Traditional Antibiograms. In Therapeutic Advances in Infectious Disease (Vol. 8, pp. 1–9). SAGE Publications Ltd. https://doi.org/10.1177/20499361211011373

13) WHO. (2019). Antimicrobial Stewardship Program Mesin Health-Care Facilities in Low-and Middle- Income Countries.

14) Permenkes No. 28. (2021). Peraturan Menteri Kesehatan Republik Indonesia- Nomor 28 tahun 2021- Pedoman Penggunaan Antibiotik.

15) WHO. (2018). WHO Report on Surveillance of Antibiotic Consumption.

16) Rubio-Perez, I., Martin-Perez, E., Garcia, D. D., Calvo, M. L. B., & Barrera, E. L. (2012). Extended- spectrum beta-lactamaseproducing bacteria in a Tertiary Care Hospital in Madrid: Epidemiology, risk factors and antimicrobial susceptibility patterns. Emerging Health Threats Journal, 5(1). https://doi.org/10.3402/ehtj.v5i0.11589

17) Oli, A. N., Eze, D. E., Gugu, T. H., Ezeobi, I., Maduagwu, U. N., & Ihekwereme, C. P. (2017). Multi- antibiotic resistant extended-spectrum beta-lactamase producing bacteria pose a challenge to the effective treatment of wound and skin infections. Pan African Medical Journal, 27. https://doi.org/10.11604/pamj.2017.27.66.10226

18) Ayele, A. A., Gebresillassie, B. M., Erku, D. A., Gebreyohannes, E. A., Demssie, D. G., Mersha, A. G., & Tegegn, H. G. (2018). Prospective evaluation of Ceftriaxone use in medical and emergency wards of Gondar university referral hospital, Ethiopia. Pharmacology Research and Perspectives, 6(1). https://doi.org/10.1002/prp2.383

19) Gorgulho, A., Cunha, F., Alves Branco, E., Azevedo, A., Almeida, F., Duro, R., Andrade, P., Rocha Pereira, N., & Lima Alves, C. (2023). Appropriateness of Empirical Prescriptions of Ceftriaxone and Identification of Opportunities for Stewardship Interventions: A Single-Centre Cross-Sectional Study. Antibiotics, 12(2). https://doi.org/10.3390/antibiotics12020288

20) Bush, K., & Bradford, P. A. (2020). Epidemiology of β-lactamase-producing pathogens. In Clinical Microbiology Reviews (Vol. 33, Issue 2). American Society for Microbiology. https://doi.org/10.1128/CMR.00047-19

21) Limato, R., Lazarus, G., Dernison, P., Mudia, M., Alamanda, M., Nelwan, E. J., Sinto, R., Karuniawati, A., Rogier Van Doorn, H., & Hamers, R. L. (2022). Optimizing antibiotic use in Indonesia: A systematic review and evidence synthesis to inform opportunities for intervention. 1–32. https://doi.org/10.1016/j

22) Carrara, E., Pfeffer, I., Zusman, O., Leibovici, L., & Paul, M. (2018). Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. In International Journal of Antimicrobial Agents (Vol. 51, Issue 4, pp. 548–553). Elsevier B.V. https://doi.org/10.1016/j.ijantimicag.2017.12.013.

Downloads

Published

2026-01-15

How to Cite

Characterization of Bacterial Isolates and Antibiotic Susceptibility Testing in General Surgery Patients: Analisis Pola Bakteri dan Pola Sensivitas Antibiotik pada Pasien Bedah Umum. (2026). Journal Pharmasci (Journal of Pharmacy and Science), 11(1), 56-66. https://doi.org/10.53342/pharmasci.v11i1.563